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Scale decomposition of unstable growing fronts
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We present results obtained from the wavelet transform of unstable growing fronts. The linear growth
equation is transformed using the Hermitian wavelets obtained from recursive shifts and changes in the
Gaussian filters. We explore the evolution of the instability at different scales, and at different lo¢amtites
direct spacg in the wavelet domain, using a numerical growth model and the experimental example of
chemically etched silicon. Wavelet formalism may have an advantage over Fourier methods in the sense that
one can track the instability in the locati¢direct spacgand at different scales simultaneously. It also provides
a quantitative tool for the characterization of the growing fronts through its concise scale discrimination.
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[. INTRODUCTION cept for a few crystallographic orientation$2]. Very few
. _ attempts have been made to explain the roughening of sur-
A variety of growth and erosion phenomena can be defaces during wet etching of silicon. It has been suggested in

scribed by stochastic partial differential equations. EpitaxiaRef.[13] that an instability resulting from the surface tension
growth is an example in which atoms are deposited on thexists during the etching of &i10).

substrate, where they become attached to other atoms or un- |n epitaxial growth, and in the presence of the ES barrier,
dergo diffusion. In homoepitaxial growth, deposited atomsthe growing surface consists of regular mound structures.
and substrate, atoms are the same. Consequently, there is When diffusion is taken into account in the growth mecha-
lattice mismatch and the growth process is expected to bgism, the continuum equation describing the growth process
smooth. In fact, over a certain range of temperature, thgvas proposed by Johnse al. [14]:

growth process is a layer-by-layer process. A layer is entirely

grown before the next layer starts to grgij. This is an oh ==V Vh —KV4h + 7(x,1) (1)
ideal situation where one would like to achieve such smooth at 1+ VH ke

surfaces for technological applications. However, most of the . . . .

time the resulting surfaces are rough, and the layer-by-layef€ t€rm #(x,t) is Gaussian white noise, such that
process does not occur in such situations. In the epitaxidl7(X,t)7(x",t")=2D&x-x")é(t-t). This noise term re-
growth process mentioned above, the roughening of Surfacé@CtS the stochastic character of the grOWth process. The first
is explained by two processed) The flux of deposited at- term on the right-hand side of E¢l) represents the up-hill
oms is not constant, but fluctuates around a mean value. Th@fowth due to the ES barrier effect, and the second term is
induces a random noise in the growing process, and selflue to the surface diffusioeapillary effecy. This term has a
affine surfaces are obtained, exhibiting scaling properties igtabilizing effect against the instability induced by ES bar-
space and timg2,3]. (i) An asymmetric diffusion barrier, rier._The parameter>0 gives the gttachmen_t/detachment
called the Ehrlich-Schwoeb¢ES) barrier, exists at the edges Parrier at the surface edges, aKd-0 is proportional to the

of atomic steps impeding a downhill flow of atoms across thesurface diffusion constant. At the early stage of growth, the
step[4]. This asymmetry in attachment kinetics creates arflopeVh is small and Eq(1) becomes

instability for low temperature growth on vicinal surfaces, oh

and this class of growth instability has since been observed — == vV?h - KV*h + 5(x,t). (2)

in many experimentgsee, for example, Ref5]).

_ The erosion of surfaces by ion sputtering gives rise t0ggcayse the noise term is a random Gaussian prooess)
ripples on bombarded surfacg§]. The ripple formation is s 5156 4 random Gaussian process. Equat®ncan also
attributed to an instability that is inherent in the erosion Pro-qescribe the erosion of surfaces by ion bombardni6ht

ces{cs itself, an.d Itis ImI(;ed t% the surfaﬁe curvgt(ﬂee ?lgo However, the parameterarises from a different mechanism
Ref. [7]). For interested readers, excellent reviews o 'nSta'generated by the erosion process and it is given iby

bilities in growth of crystals and ion sputtering of surfaces:FaQYOF where F is flux, a is ion energy penetration

can be found in Ref§8-10. depth,() is atomic volumeY, is sputtering yield, and' is a

On the other hand, etching of crystals is a very important,egicient governing the erosion rate dependence on the lo-
part of today’s micro technology. In microsystems, for ex- cal surface curvature

ample, chemical etching of silicon is a widely used technique A jinear stability analysis reveals the instability of E8).
in the fabrlcat|on_of miniaturized structurgsl, 12. 'In most Generally, this analysis is performed in Fourier space. Fou-
cases, the resulting etched surfaces are rough in texture exa anajysis shows that in the linear regime small initial

perturbations will grow in time to form the dominant feature
of the surface textur¢the dominant wavelengthA small
*Electronic address: zm@ecs.soton.ac.uk perturbation(small g perturbation will grow at a ratew(q)
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=vg?-Kg?, resulting in a cellular local structure, correspond- 0.5
ing to a critical wave numk@i\e’v/K and to a maximally
unstable wave Vect@= v/ 2K, corresponding to a domi-

nant wavelengthyy=2m2K/ .

We propose in this paper to analyze Ef) in wavelet
space. This will allow us to track of the growth instability in
both direct and frequencgor scalg space at the same time,
as opposed to Fourier analysis, in which the instability is;u
studied only in the frequency space.

It is well known that a function can be expanded into a  _g.5}
base function to represent it in a form adapted to a particular
guestion. In harmonic analysis, for example, the signals ob-
tained are sinusoids, and thus the suitable method of expan
sion is Fourier transformation. The generated height profiles
from Eg.(2) have no sinusoidal shapes, but rather triangular L 5 0 5 10
shapes having a largely linear rise to the maximum and a X
subsequent linear decay. Another type of transformation us-
ing a suitable base functions should yield a more satisfying FIG. 1. A graphic representation of the Hermitian wavelet
description. These base functions must have a shape intri§2(X)-
sically similar to that of the quick variations of the signal,
permitting a resolution in frequency and space. An ideal canthe mother wavelet. These basis functions vary in scale by
didate is the wavelet transfor(VT), based on an appropri- slicing the data space using different scale sizes. The con-
ately chosen mother wavelet. The difference between th&nuous wavelet transforfCWT) is defined as the sum over
WTs and the Fourier transforms is that wavelet functions arell of the surface profile multiplied by the shifted and scaled
localized in space, whereas the sine and cosine are not. Aother wavelet:
detailed description of the wavelet transform formalism is
beyond the scope of this paper. See, for example, R&f. _
for more information about the theory of wavelets. Wavelet W(a,b) _f h()¢(a,b)dx. @
analysis is capable of revealing aspects of data that other ) o o )
signal analysis techniques miss: aspects like trends, breal¥(@.b) is the wavelet coefficient which is a function of the
down points, discontinuities in higher derivatives, and self-Scale and the position. Then, CWT describes the surface pro-
similarity. From an intuitive point of view, wavelet decom- file in a given positiorb and a given scale.
position measures the degree of “resemblance” between the Hermitian wavelets[16] are particularly attractive be-
wavelet and the original signal. It is therefore suitable forcause of their recursive property that allows one to transform
detecting self-similarity or fractality of the signal. This de- linear partial differential equations from the direct space to
gree of “resemblance” is represented by wavelet coefficientdvavelet space, as we will show in what follows. They are
If the signal (surface profil is self-similar, then wavelet derived recursively from the Gaussian functiogy(x)
coefficients will be similar at different scales. This paper is=e™*7? i.e,
organized as follows: Sec. Il describes the Hermitian wave-
lets used in this work, and their properties. We also derive an
evolution equation of the growth process in wavelet space in
this section. In Sec. Ill we present results on the numerical 5
computation of wavelet coefficients for the linear growth The functiongg(x)=€"? itself is not a waveletP,(x) is
equation(2). In Sec. 1V, a practical example of chemically the Hermite polynomial of orden. The waveletg, satisfy
etched silicon is discussed, and finally in Sec. V, our concluthe admissibility conditionfZ,.g,(x)dx=0. It is then possible

dgn-1(%)

ax (= D"Pr(X)go(X). (5

gn(X) = -

sion is presented. to invert the wavelet transform. The well-known “Mexican
. 2 . . .
Hat” wavelet is €,(x)=(1-x?)e™7?  and is displayed in
Il. WAVELET TRANSFORM OF UNSTABLE GROWING Fig. 1
FRONTS The wavelet transform of a height fiehly,t) is defined
A. Hermitian wavelets and their properties as
Wavelet analysis is the breaking up of a signal into shifted o
and scaled versions of the originar mothej wavelet. That Un(, %, 1) = k172 f h(y,t)g.[ x(y — x)]dy, (6)
is, -
1 [x-Db where we have adopted the notation from Réf7]. The
(a,b) = \EJI = ) (3 variablex is the inverse of the scale usually used in wavelet

notation and is called the “wavelet number.” Now let us put
wherea (a>0) andb are, respectively, the scale parameteré=«(y—x). It is easy to show that the wavelejg satisfy the
and the dilatation parameterjs the space variable, antdis ~ recursion relation
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1 w
(? — ( &2 )
& —U,= VK vl —hu,(x (y—=x))d
ceo: ot n f_x (9y2 n y y
:N ”_ 0 34
-Vk[ K yh Un(x (y = x))dy+ S(k,x,1),
8 (11)
> where
Su(rxb) =V J 7Y, Gn(x (y = x))dy (12
? -0
o
s isthe wavelet transform of the noisgy,t). Now, integrating
both terms by parts on the right-hand side of Ek{), using
0 200 400 Egs.(9) and(10), and little bit of algebra, we finally arrive at
FIG. 2. The scale decomposition of the surface profile tfor J P 9
=1.6 and for three different scales:d+0.8, 8, and 24. The wavelet ~ —Up =~ H;(k) U, — Ha(k) —Up — Ha(x)up + Sk, X, 1),
go(X) was used. a oK oK
(13
& d here
(==K - (n+ DG . ()
Hi(x) = K«
Using Eq.(7) combined with the definitiori6) leads to the
important relation Ho(k) = Kk®+ p(2n + 1) &5,
g 1P (n+1/2) . ) )
U= g Gl T U, (8) Hi(k) = Ke*(n+ 1/2)% + v(n+ 1/2) k2. (14

Equation(13) is a stochastic partial differential equation op-

This is true for any fieldh. We can also show the recursion erating in Hermitian wavelet space. This equation deserves,

relation: of course, more development, but it is beyond the scope of
J i . this paper. Instead, we will solve E@2) in the physical
&un =KUng, 1=1,2,3,... 9) space and transform the result into Hermitian wavelet space

using the transforng6). We chose the latter because it was
One can define the wavelet power spectrum, ordbale-  straightforward.
gram, which is useful at picking out frequencies and calcu-
lating energy distributions:
" I1l. NUMERICAL DERIVATION OF THE WAVELET
Wi(k.t) :J [[un(re,x, ) JPelx. (10) COEFFICIENTS FOR THE LINEAR GROWTH EQUATION

Equation(2) is discretized and solved numerically in one-
Relation (10) is the analog of the power spectrum used indimensional space. Periodic boundary conditions are used. If
Fourier analysis. This is a representation of the power conthe heighth of the evolving front takes discrete valu@is
tained in each scale k/ For a finite signal which is the case =h;,i=1...N}, whereN is the system size, we have the it-
in a practical situation, this definition becom®g,(«,x,t) eration:
=(](un(x,x,1)|?,, where the brackets denote the spacial av-

erage over the variablg. Using this relation, one gets a  h(t + At) = hy(t) + At(- Vvizhi ‘KVflhi)"'At LDzr,
location-invariant measure of power in a given scale. At(Ax)
In the next section, we will use the relations above to (15

transform the stochastic partial differential equati@ninto

the wavelet domain. This will lead to the evolution equation'Vherer is a uniform random number between -1 andvi.
of wavelet coefficients defined by E¢f). Ve, and Vi are the first-, second-, and fourth-order discreti-

zation operators, respectively.
Wavelets have the ability to split a surface profile up into
components that are not pure sine waves, as opposed to Fou-
In the following, we will use the relations obtained in the rier transform. When summing all those components, one
last section to transform E@2) into an evolution equation retrieves the exact profile. In Fig. 2 we show a splitted sur-
operating in the wavelet domain. However, our objective isface profile generated from E@L5), and transformed using
not to solve this equation in the present work, but it is usefuthe transform(6) and g,(x), for three different scales k/
to derive it. Using the definitio6) we have =0.8, 8, and 24 and for=1.6. Note that high oscillations

B. The growth equation in wavelet space
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N
a

the noiser(y,t) initializes the growth at different scales. As
time advances, large scales will grow, while small scales will
| 1 decay, as clearly seen in Fig[&ther sides of the scale band
in Fig. 3(c)]. The competition between the capillary effect
w A' w‘ 0.5 and the ES barrier effect gives rise to a dominant scale,
3 MMM 'l “ which constitutes the dominant surface feature. To quantify
0 50 100 0 50 100 the above observations, one needs to compute the scalegram
(@) Position x (b) Position x (which is defined in Sec. Il A Figure 4 displays the scale-
5 o5 gram evolution using the same integration parameters as
above(Fig. 3). The figure clearly shows the existence of a
dominant scale. In our example, the dominant scalé; is
=3.5. The final surface profile corresponds to the wavelet
component aky, and it is represented at the inset of Fig. 4. In
S——— fact, the heigh_t p_rofile derived from the solution of E45)
is very much similar to the wavelet component at the skale
It is very important to stress that the ratd v plays an
important role in the growth process. Kf/v>1, the capil-
lary effect dominates and the roughening mechanism be-
comes the noise-induced dynamic rougheniktyllins dif-
fusion). For smallK/v, the ES barrier effect dominates. In
fact, as shown in Fig. 5, as the ralid v increases, the maxi-

d I | hile | d mum of scalegram curves is hard to distinguish. This is an
correspond to small scales, while low ones correspond 1, jiation that the diffusion mechanism is dominating. Fig-

large scales, and also that the decomposition does not resw}e 6 shows the plot of the time evolution of the scalegram

in sine waves, for someK/ v ratios. For large/ v ratios, the dominant scale
To follow the evolution of the growth instability in both is hardly distinguished from the early stage of growth. How-

scale and location, we perform the wavelet transform of th _ .
surface height for three different times=0.6, 1.5, and 3. ever, fork/v=1, at the early stage of growth, the maximum
'ts still not visible, but later on, a clear maximum is appear-

Figure 3 shows the result for the magnitude of the wavele S , . -
transform. The system size li=250 and the integration pa- N9 For smallK/v ratios (in which the ES barrier effect is
rameters are=1. D=0.05 andk=0.2. The wavelet coeffi- dominating, the dominant scale is clearly visible from the
cients are obtained using the waveietx), and are averaged early stages of growth. It is very interesting to note, from th(_a
over 50 realizations. We notice that the magnitude of theﬁlfts.m Fig. 6, the appea_rancglof a critical scale as the ratio
wavelet transformu, increases with time as one would ex- '~ ¥ Increases. Above this critical scale, the scalegram n-
pect from an unstable front. A band of scales correspondin reases, meaning that large sca_le features are growing, while
to the maximum amplitude is clearly developing as time ad- mall scale feature_s are decaying. The critical scale corre-
vances. The dominant scaleorresponding to the highest sponds to the point ln th? scalegram g_rfiph wherg the
amplitude lies in the middle of this band. At the early stage, branches split. FoK/»=5 [Fig. &c)], the critical scale is

1.5
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FIG. 3. (Color onling The magnitude of the wavelet coefficients
of the height for three different timega) t=0.6, (b) t=1.5, and(c)
t=3. The integration parameters are1l, D=0.05, andK=0.2. The
wavelet coefficients are obtained using the wavgx).
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FIG. 4. The scalegram evolution of the growing front described scale

by Eq. (2). The integration parameters are=1, D=0.05, andK
=0.2. The wavelet),(x) is used in this calculation. The inset shows  FIG. 5. The scalegram for differen{/v ratios fort=3. The
the wavelet component corresponding to the dominant scale. waveletg,(x) is used in this calculation.
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FIG. 7. The scalegram of chemically etched silicon showing the

critical scale above which all surface features grow.

scale

Critical scale scalegram graph where the branches split, and it has the
FIG. 6. Time evolution of the scalegram i/ v=0.4, 1, and 5  Valuel;=5 um. The scalegram clearly reveals that the etch-
ratios. The waveleg,(x) is used. ing of silicon110) with KOH is unstable. It is noticed in Fig.
7 that the scalegram maximum, corresponding to the domi-
IV, EXPERIMENTAL EXAMPLE: ANISOTROPIC nant scale, is not visible. This suggests that at this stage of

etching, the effect of the corner interaction on the surface
might be the dominating etching process. More experiments
Although in the previous section our discussion was onlyare needed to be carried out at longer etching times, espe-
focused on growth, we will discuss in this section the appli-Cially when the effect of nonlinearity introduced by the lat-
cation of the above results to the chemical etching of siliconeral etchingthe Kardar-Parisi-Zhang<PZ) term] starts to
which can be described by the anisotropic version of @. be significant. This will be the subject of future investiga-

ETCHING OF SILICON

[13] (the second-order term has two coefficiengsand »,, ~ 1O1S:

corresponding to th& andy direction, respectively In this V. CONCLUSION

case, the parameter is related to the surface tensigthe . N
surface free energy densjfyvhile the paramete is related We have presented results concerning the characterization

to the energy of the formation of corners on the surface. W(-ﬁ
use the data fofl10)-oriented silicon chemically etched with
potassium hydroxidgKOH). A columnar structure on the
surface is observeths opposed to the mounds formation in
the growth case The height data are derived from atomic

ave investigated the linear growth equation alongside an
experimental example of the anisotropic etching of silicon.
The unstable linear growth equation is transformed in wave-
let space and the corresponding scalegram is computed. The

f . i di dif scalegram is useful for the determination of the dominant
orce microscopdAFM) images corresponding to different 5,q the critical scales of the growth process. Experimentally,

etching times. We calculate the scalegram inxfairection e instability in silicon etching with KOH is revealed. We
(perpendicular to the ripples orientatjofor four different  haye determined the critical scale in this case, and find its
times: 40, 45, 50, and 55 min. The result is displayed in Figyajue to bel,=5 um. Wavelet formalism has an advantage
7, where we clearly notice the existence of a critical stale over Fourier methods in a way that one can track the insta-
above which the scalegram increases, meaning that largeility in the location(direct spacgand at different scales at
scale features are growing, while small-scale features are dere same time. It also provides a quantitative tool for the
caying. The critical scale corresponds to the point in thecharacterization of the growing fronts.
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