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We present results obtained from the wavelet transform of unstable growing fronts. The linear growth
equation is transformed using the Hermitian wavelets obtained from recursive shifts and changes in the
Gaussian filters. We explore the evolution of the instability at different scales, and at different locations(in the
direct space) in the wavelet domain, using a numerical growth model and the experimental example of
chemically etched silicon. Wavelet formalism may have an advantage over Fourier methods in the sense that
one can track the instability in the location(direct space) and at different scales simultaneously. It also provides
a quantitative tool for the characterization of the growing fronts through its concise scale discrimination.
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I. INTRODUCTION

A variety of growth and erosion phenomena can be de-
scribed by stochastic partial differential equations. Epitaxial
growth is an example in which atoms are deposited on the
substrate, where they become attached to other atoms or un-
dergo diffusion. In homoepitaxial growth, deposited atoms
and substrate, atoms are the same. Consequently, there is no
lattice mismatch and the growth process is expected to be
smooth. In fact, over a certain range of temperature, the
growth process is a layer-by-layer process. A layer is entirely
grown before the next layer starts to grow[1]. This is an
ideal situation where one would like to achieve such smooth
surfaces for technological applications. However, most of the
time the resulting surfaces are rough, and the layer-by-layer
process does not occur in such situations. In the epitaxial
growth process mentioned above, the roughening of surfaces
is explained by two processes:(i) The flux of deposited at-
oms is not constant, but fluctuates around a mean value. This
induces a random noise in the growing process, and self-
affine surfaces are obtained, exhibiting scaling properties in
space and time[2,3]. (ii ) An asymmetric diffusion barrier,
called the Ehrlich-Schwoebel(ES) barrier, exists at the edges
of atomic steps impeding a downhill flow of atoms across the
step [4]. This asymmetry in attachment kinetics creates an
instability for low temperature growth on vicinal surfaces,
and this class of growth instability has since been observed
in many experiments(see, for example, Ref.[5]).

The erosion of surfaces by ion sputtering gives rise to
ripples on bombarded surfaces[6]. The ripple formation is
attributed to an instability that is inherent in the erosion pro-
cess itself, and it is linked to the surface curvature(see also
Ref. [7]). For interested readers, excellent reviews of insta-
bilities in growth of crystals and ion sputtering of surfaces
can be found in Refs.[8–10].

On the other hand, etching of crystals is a very important
part of today’s micro technology. In microsystems, for ex-
ample, chemical etching of silicon is a widely used technique
in the fabrication of miniaturized structures[11,12]. In most
cases, the resulting etched surfaces are rough in texture ex-

cept for a few crystallographic orientations[12]. Very few
attempts have been made to explain the roughening of sur-
faces during wet etching of silicon. It has been suggested in
Ref. [13] that an instability resulting from the surface tension
exists during the etching of Si(110).

In epitaxial growth, and in the presence of the ES barrier,
the growing surface consists of regular mound structures.
When diffusion is taken into account in the growth mecha-
nism, the continuum equation describing the growth process
was proposed by Johnsonet al. [14]:

]h

]t
= − n ¹

¹h

1 + ¹ h2 − K¹4h + hsx,td. s1d

The term hsx,td is Gaussian white noise, such that
khsx,tdhsx8 ,t8dl=2Ddsx−x8ddst− t8d. This noise term re-
flects the stochastic character of the growth process. The first
term on the right-hand side of Eq.(1) represents the up-hill
growth due to the ES barrier effect, and the second term is
due to the surface diffusion(capillary effect). This term has a
stabilizing effect against the instability induced by ES bar-
rier. The parametern.0 gives the attachment/detachment
barrier at the surface edges, andK.0 is proportional to the
surface diffusion constant. At the early stage of growth, the
slope¹h is small and Eq.(1) becomes

]h

]t
= − n¹2h − K¹4h + hsx,td. s2d

Because the noise term is a random Gaussian process,hsx,td
is also a random Gaussian process. Equation(2) can also
describe the erosion of surfaces by ion bombardment[6].
However, the parametern arises from a different mechanism
generated by the erosion process and it is given byn
=FaVY0G, where F is flux, a is ion energy penetration
depth,V is atomic volume,Y0 is sputtering yield, andG is a
coefficient governing the erosion rate dependence on the lo-
cal surface curvature.

A linear stability analysis reveals the instability of Eq.(2).
Generally, this analysis is performed in Fourier space. Fou-
rier analysis shows that in the linear regime small initial
perturbations will grow in time to form the dominant feature
of the surface texture(the dominant wavelength). A small
perturbation(small q perturbation) will grow at a ratevsqd*Electronic address: zm@ecs.soton.ac.uk
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=nq2−Kq4, resulting in a cellular local structure, correspond-
ing to a critical wave numberqc=În /K and to a maximally
unstable wave vectorqmax=În /2K, corresponding to a domi-
nant wavelengthld=2pÎ2K /n.

We propose in this paper to analyze Eq.(2) in wavelet
space. This will allow us to track of the growth instability in
both direct and frequency(or scale) space at the same time,
as opposed to Fourier analysis, in which the instability is
studied only in the frequency space.

It is well known that a function can be expanded into a
base function to represent it in a form adapted to a particular
question. In harmonic analysis, for example, the signals ob-
tained are sinusoids, and thus the suitable method of expan-
sion is Fourier transformation. The generated height profiles
from Eq. (2) have no sinusoidal shapes, but rather triangular
shapes having a largely linear rise to the maximum and a
subsequent linear decay. Another type of transformation us-
ing a suitable base functions should yield a more satisfying
description. These base functions must have a shape intrin-
sically similar to that of the quick variations of the signal,
permitting a resolution in frequency and space. An ideal can-
didate is the wavelet transform(WT), based on an appropri-
ately chosen mother wavelet. The difference between the
WTs and the Fourier transforms is that wavelet functions are
localized in space, whereas the sine and cosine are not. A
detailed description of the wavelet transform formalism is
beyond the scope of this paper. See, for example, Ref.[15]
for more information about the theory of wavelets. Wavelet
analysis is capable of revealing aspects of data that other
signal analysis techniques miss: aspects like trends, break-
down points, discontinuities in higher derivatives, and self-
similarity. From an intuitive point of view, wavelet decom-
position measures the degree of “resemblance” between the
wavelet and the original signal. It is therefore suitable for
detecting self-similarity or fractality of the signal. This de-
gree of “resemblance” is represented by wavelet coefficients.
If the signal (surface profile) is self-similar, then wavelet
coefficients will be similar at different scales. This paper is
organized as follows: Sec. II describes the Hermitian wave-
lets used in this work, and their properties. We also derive an
evolution equation of the growth process in wavelet space in
this section. In Sec. III we present results on the numerical
computation of wavelet coefficients for the linear growth
equation(2). In Sec. IV, a practical example of chemically
etched silicon is discussed, and finally in Sec. V, our conclu-
sion is presented.

II. WAVELET TRANSFORM OF UNSTABLE GROWING
FRONTS

A. Hermitian wavelets and their properties

Wavelet analysis is the breaking up of a signal into shifted
and scaled versions of the original(or mother) wavelet. That
is,

csa,bd =
1
Îa

cSx − b

a
D , s3d

wherea sa.0d andb are, respectively, the scale parameter
and the dilatation parameter,x is the space variable, andc is

the mother wavelet. These basis functions vary in scale by
slicing the data space using different scale sizes. The con-
tinuous wavelet transform(CWT) is defined as the sum over
all of the surface profile multiplied by the shifted and scaled
mother wavelet:

Wsa,bd =E hsxdcsa,bddx. s4d

Wsa,bd is the wavelet coefficient which is a function of the
scale and the position. Then, CWT describes the surface pro-
file in a given positionb and a given scalea.

Hermitian wavelets[16] are particularly attractive be-
cause of their recursive property that allows one to transform
linear partial differential equations from the direct space to
wavelet space, as we will show in what follows. They are
derived recursively from the Gaussian functiong0sxd
=es−x2/2d, i.e,

gnsxd = −
dgn−1sxd

dx
= s− 1dnPnsxdg0sxd. s5d

The functiong0sxd=es−x2/2d itself is not a wavelet.Pnsxd is
the Hermite polynomial of ordern. The waveletsgn satisfy
the admissibility condition:e−`

` gnsxddx=0. It is then possible
to invert the wavelet transform. The well-known “Mexican
Hat” wavelet is −g2sxd=s1−x2des−x2/2d, and is displayed in
Fig. 1.

The wavelet transform of a height fieldhsy,td is defined
as

unsk,x,td = k1/2E
−`

`

hsy,tdgnfksy − xdgdy, s6d

where we have adopted the notation from Ref.[17]. The
variablek is the inverse of the scale usually used in wavelet
notation and is called the “wavelet number.” Now let us put
j=ksy−xd. It is easy to show that the waveletsgn satisfy the
recursion relation

FIG. 1. A graphic representation of the Hermitian wavelet
g2sxd.
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]2

]x2gnsjd = − k3 ]

]x
gnsjd − sn + 1dk2gnsjd. s7d

Using Eq.(7) combined with the definition(6) leads to the
important relation

]

]k
un = −

1

k3

]2

]x2un −
sn + 1/2d

k
un. s8d

This is true for any fieldh. We can also show the recursion
relation:

]i

]xi un = kiun+1, i = 1,2,3, . . . s9d

One can define the wavelet power spectrum, or thescale-
gram, which is useful at picking out frequencies and calcu-
lating energy distributions:

Wnsk,td =E
−`

`

fuunsk,x,tdug2dx. s10d

Relation (10) is the analog of the power spectrum used in
Fourier analysis. This is a representation of the power con-
tained in each scale 1/k. For a finite signal which is the case
in a practical situation, this definition becomesWnsk ,x,td
=kusunsk ,x,tdu2lx, where the brackets denote the spacial av-
erage over the variablex. Using this relation, one gets a
location-invariant measure of power in a given scale.

In the next section, we will use the relations above to
transform the stochastic partial differential equation(2) into
the wavelet domain. This will lead to the evolution equation
of wavelet coefficients defined by Eq.(6).

B. The growth equation in wavelet space

In the following, we will use the relations obtained in the
last section to transform Eq.(2) into an evolution equation
operating in the wavelet domain. However, our objective is
not to solve this equation in the present work, but it is useful
to derive it. Using the definition(6) we have

]

]t
un = ÎkE

−`

`

nS ]2

]y2hDun„k sy − xd…dy

− ÎkE
−`

`

KS ]4

]y4hDun„k sy − xd…dy+ Ssk,x,td,

s11d

where

Snsk,x,td = ÎkE
−`

`

hsy,tdgn„k sy − xd…dy s12d

is the wavelet transform of the noisehsy,td. Now, integrating
both terms by parts on the right-hand side of Eq.(11), using
Eqs.(9) and(10), and little bit of algebra, we finally arrive at

]

]t
un = − H1skd

]2

]k2un − H2skd
]

]k
un − H3skdun + Ssk,x,td,

s13d

where

H1skd = Kk6,

H2skd = Kk6 + ns2n + 1dk3,

H3skd = Kk4sn + 1/2d2 + nsn + 1/2dk2. s14d

Equation(13) is a stochastic partial differential equation op-
erating in Hermitian wavelet space. This equation deserves,
of course, more development, but it is beyond the scope of
this paper. Instead, we will solve Eq.(2) in the physical
space and transform the result into Hermitian wavelet space
using the transform(6). We chose the latter because it was
straightforward.

III. NUMERICAL DERIVATION OF THE WAVELET
COEFFICIENTS FOR THE LINEAR GROWTH EQUATION

Equation(2) is discretized and solved numerically in one-
dimensional space. Periodic boundary conditions are used. If
the heighth of the evolving front takes discrete valueshh
=hi , i =1. . .Nj, whereN is the system size, we have the it-
eration:

hist + Dtd = histd + Dts− n¹i
2hi − K¹i

4hid + DtÎ 12D

DtsDxd2r ,

s15d

wherer is a uniform random number between −1 and 1.¹i,
¹i

2, and¹i
4 are the first-, second-, and fourth-order discreti-

zation operators, respectively.
Wavelets have the ability to split a surface profile up into

components that are not pure sine waves, as opposed to Fou-
rier transform. When summing all those components, one
retrieves the exact profile. In Fig. 2 we show a splitted sur-
face profile generated from Eq.(15), and transformed using
the transform(6) and g2sxd, for three different scales 1/k
=0.8, 8, and 24 and fort=1.6. Note that high oscillations

FIG. 2. The scale decomposition of the surface profile fort
=1.6 and for three different scales: 1/k=0.8, 8, and 24. The wavelet
g2sxd was used.
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correspond to small scales, while low ones correspond to
large scales, and also that the decomposition does not result
in sine waves.

To follow the evolution of the growth instability in both
scale and location, we perform the wavelet transform of the
surface height for three different times:t=0.6, 1.5, and 3.
Figure 3 shows the result for the magnitude of the wavelet
transform. The system size isL=250 and the integration pa-
rameters aren=1, D=0.05, andK=0.2. The wavelet coeffi-
cients are obtained using the waveletg2sxd, and are averaged
over 50 realizations. We notice that the magnitude of the
wavelet transformun increases with time as one would ex-
pect from an unstable front. A band of scales corresponding
to the maximum amplitude is clearly developing as time ad-
vances. The dominant scale(corresponding to the highest
amplitude) lies in the middle of this band. At the early stage,

the noisehsy,td initializes the growth at different scales. As
time advances, large scales will grow, while small scales will
decay, as clearly seen in Fig. 3[either sides of the scale band
in Fig. 3(c)]. The competition between the capillary effect
and the ES barrier effect gives rise to a dominant scale,
which constitutes the dominant surface feature. To quantify
the above observations, one needs to compute the scalegram
(which is defined in Sec. II A). Figure 4 displays the scale-
gram evolution using the same integration parameters as
above(Fig. 3). The figure clearly shows the existence of a
dominant scale. In our example, the dominant scale isld
=3.5. The final surface profile corresponds to the wavelet
component atld, and it is represented at the inset of Fig. 4. In
fact, the height profile derived from the solution of Eq.(15)
is very much similar to the wavelet component at the scaleld.

It is very important to stress that the ratioK /n plays an
important role in the growth process. IfK /n@1, the capil-
lary effect dominates and the roughening mechanism be-
comes the noise-induced dynamic roughening(Mullins dif-
fusion). For smallK /n, the ES barrier effect dominates. In
fact, as shown in Fig. 5, as the ratioK /n increases, the maxi-
mum of scalegram curves is hard to distinguish. This is an
indication that the diffusion mechanism is dominating. Fig-
ure 6 shows the plot of the time evolution of the scalegram
for someK /n ratios. For largeK /n ratios, the dominant scale
is hardly distinguished from the early stage of growth. How-
ever, forK /n=1, at the early stage of growth, the maximum
is still not visible, but later on, a clear maximum is appear-
ing. For smallK /n ratios (in which the ES barrier effect is
dominating), the dominant scale is clearly visible from the
early stages of growth. It is very interesting to note, from the
plots in Fig. 6, the appearance of a critical scale as the ratio
K /n increases. Above this critical scale, the scalegram in-
creases, meaning that large scale features are growing, while
small scale features are decaying. The critical scale corre-
sponds to the point in the scalegram graph where the
branches split. ForK /n=5 [Fig. 6(c)], the critical scale is
lc,5.

FIG. 3. (Color online) The magnitude of the wavelet coefficients
of the height for three different times:(a) t=0.6, (b) t=1.5, and(c)
t=3. The integration parameters aren=1, D=0.05, andK=0.2. The
wavelet coefficients are obtained using the waveletg2sxd.

FIG. 4. The scalegram evolution of the growing front described
by Eq. (2). The integration parameters aren=1, D=0.05, andK
=0.2. The waveletg2sxd is used in this calculation. The inset shows
the wavelet component corresponding to the dominant scale.

FIG. 5. The scalegram for differentK /n ratios for t=3. The
waveletg2sxd is used in this calculation.
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IV. EXPERIMENTAL EXAMPLE: ANISOTROPIC
ETCHING OF SILICON

Although in the previous section our discussion was only
focused on growth, we will discuss in this section the appli-
cation of the above results to the chemical etching of silicon,
which can be described by the anisotropic version of Eq.(2)
[13] (the second-order term has two coefficientsnx and ny,
corresponding to thex andy direction, respectively). In this
case, the parametern is related to the surface tension(the
surface free energy density), while the parameterK is related
to the energy of the formation of corners on the surface. We
use the data for(110)-oriented silicon chemically etched with
potassium hydroxide(KOH). A columnar structure on the
surface is observed(as opposed to the mounds formation in
the growth case). The height data are derived from atomic
force microscope(AFM) images corresponding to different
etching times. We calculate the scalegram in thex direction
(perpendicular to the ripples orientation) for four different
times: 40, 45, 50, and 55 min. The result is displayed in Fig.
7, where we clearly notice the existence of a critical scalelc
above which the scalegram increases, meaning that large-
scale features are growing, while small-scale features are de-
caying. The critical scale corresponds to the point in the

scalegram graph where the branches split, and it has the
value lc=5 mm. The scalegram clearly reveals that the etch-
ing of silicon(110) with KOH is unstable. It is noticed in Fig.
7 that the scalegram maximum, corresponding to the domi-
nant scale, is not visible. This suggests that at this stage of
etching, the effect of the corner interaction on the surface
might be the dominating etching process. More experiments
are needed to be carried out at longer etching times, espe-
cially when the effect of nonlinearity introduced by the lat-
eral etching[the Kardar-Parisi-Zhang(KPZ) term] starts to
be significant. This will be the subject of future investiga-
tions.

V. CONCLUSION

We have presented results concerning the characterization
of unstable growing fronts using wavelet formalism. We
have investigated the linear growth equation alongside an
experimental example of the anisotropic etching of silicon.
The unstable linear growth equation is transformed in wave-
let space and the corresponding scalegram is computed. The
scalegram is useful for the determination of the dominant
and the critical scales of the growth process. Experimentally,
the instability in silicon etching with KOH is revealed. We
have determined the critical scale in this case, and find its
value to belc=5 mm. Wavelet formalism has an advantage
over Fourier methods in a way that one can track the insta-
bility in the location(direct space) and at different scales at
the same time. It also provides a quantitative tool for the
characterization of the growing fronts.
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